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1 Introduction

A memory pool is a technique for managing memory allocation in a computer program.
It consists of a pre-allocated block of memory from which the program can request
and release memory from the pool as needed, without invoking the system’s memory
allocator. This can improve the performance, reliability and portability of the program.
Some of the benefits of memory pools are:

• They reduce memory fragmentation, which can cause inefficient use of memory
and slow down the program.

• They reduce the overhead of system memory allocation and deallocation, which
can consume a significant amount of CPU time and introduce latency.

• They allow the programmer to control the size and layout of the memory blocks,
which can optimize the memory access patterns and cache efficiency.

Preliminary work done using the CUDA library for unstructured mesh adaptation in
Omega h on NVIDIA GPUs shows a significant performance increase when using a
memory pool as opposed to traditional memory management strategies. However,
CUDA is a proprietary library developed by NVIDIA for NVIDIA devices. The use of
vendor-specific libraries such as CUDA for GPU computing can limit the portability
and flexibility of applications. As such, this research aims to achieve comparable
performance gains on AMD and Intel devices using the cross-platform library, Kokkos,
to implement the memory pool.
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2 Background and Related Works

Omega h [1] is a software library written in C++ that provides mesh adaptivity for
tetrahedron and triangle meshes, with an emphasis on high-performance computing.
It is designed to add adaptive capabilities to existing simulation software. Mesh
adaptivity allows for the reduction of both discretization error and the number of
degrees of freedom during a simulation, as well as enabling simulations with moving
objects and changing geometries. Omega h achieves this in a manner that is fast,
memory-efficient, and portable across a variety of architectures.

There exists a memory pool that works well with the CUDA backend in Omega h
[2]. However, this implementation can only be used on NVIDIA devices. On the other
hand, this implementation uses Kokkos [3], a cross-platform library, to obtain device
memory. The design for this pool was inspired by Boost’s Simple Segregated Storage
[4], a fixed-size chunk memory-pool implementation targeting host-sided memory.
A fixed-sized chunk design often allows for faster allocation, whereas variably-sized
chunk designs, such as those found in Umpire [5], allow for more memory efficiency.
An important distinction between Boost’s Simple Segregated Storage and other similar
host-bound implementations and ours is that the free-list is interweaved into the
chunks themselves. While this reduces memory overhead, storing a free-list in device
memory would require copying the free-list to the host, manipulating it, and then
copying it back to the device each time an allocation or deallocation is performed. As
such, this scheme for managing chunks was impractical. It was much more reasonable
to store the free-list in host memory. However, now that we have separated the free-list
from the underlying chunks pool, we realized it does not have to be a list, which can
result in linear allocation time. Thus, we opted to use free-sets instead. Furthermore,
since memory is only requested and returned in host-side code, the large parallelism of
GPUs does not interfere with traditional set-searching algorithms. As such, we were
able to adapt an existing strategy, known to work well for managing host memory, to
device memory where it brings significant performance improvements.

3 Technical Details

In Omega h, a StaticKokkosPool is a non-resizable pool of memory from which
an allocation can be made. Upon instantiation of each StaticKokkosPool, we
call kokkos_malloc to get a contiguous block of memory. When we destroy the
StaticKokkosPool, we call kokkos_free to release the memory back to the system.
The memory pool is divided into an array of contiguous fixed-size 1 kiB chunks. Each
chunk is ordered and indexed by their position.
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3.1 Allocation

Instead of using a free-list, which may result in linear allocation time, we use a
free-mulitset, freeSetBySize, which results in logarithmic allocation time. When
an allocation n bytes is requested, we search through freeSetBySize to find the
smallest free region that can accommodate the number of requested chunks. The
number of requested chunks is calculated by r = ⌈n÷ chunkSizeInBytes⌉. In the case
of a new or empty StaticKokkosPools, freeSetBySize would contain only one free
region representing the entire pool. Figure 1 shows how freeSetBySize relates to the
memory in the pool. A free region is defined as a set of contiguous free blocks between
allocated regions or ends of the pool. If the found free region has more chunks than
the number of requested chunks, then we split the region and only allocate the chunks
requested. The remaining region remains in the free list.

Allocated Free
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[10,13)

Figure 1: A fragmented pool with freeSetBySize showing how free regions are
organized in a tree structure. Index pairs are sorted top to bottom by the size of the
free region they represent in decreasing order.

3.2 Deallocation and Defragmentation

In addition to freeSetBySize, freeSetByIndex is used to achieve defragmentation
in logarithmic time. As the name suggests, index pairs stored freeSetByIndex in
sorted in numerical order of the first index itself as depicted in Figure 2. It is not
possible for two index pairs to “overlap” or share the same start or end index.
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Figure 2: A fragmented pool with freeSetByIndex showing how free regions are
organized in a tree structure. Index pairs are sorted left to right by the indices of the
free region they represent in increasing order.

When memory is returned to the pool, the region is temporarily inserted into the
tree as shown in Figure 3.

0 1 2 3 4 5 66 7 8 9 10 11 12

[0,2)
[5,6)

[10,13)[2,5)

Recently Freed

Figure 3: A fragmented pool with freeSetByIndex showing with a recently returned
region.

We then check for free regions adjacent to the recently returned region, remove the
two or three index pairs if any adjacent regions were found, and then insert one index
pair encompassing the defragmented region. For example, in Figure 3 the allocation
spanning blocks [2,5) is freed. This new free region is surrounded by pre-existing free
regions [0,2) and [5,6). Thus we remove the three index pairs and replace them with
[0,6). The result is visualized in Figure 4.
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Figure 4: A less fragmented pool with freeSetByIndex shown after defragmentation
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3.3 Resizing

In the event that we cannot find a suitable free region large enough to satisfy the
allocation requested, we make a new StaticKokkosPool. The KokkosPool class
performs this for us by maintaining a list of StaticKokkosPools. In Omega h,
KokkosPool is a singleton object that is lazy initialized upon the first allocation
request. Upon instantiation, it creates one StaticKokkosPool and adds the pool
to its list. Thus, when you allocate through KokkosPool, it begins at the first
StaticKokkosPool in the list and tries to allocate from it. If the allocation fails, it
moves on to the next StaticKokkosPool and tries to allocated from that. We repeat
this for every StaticKokkosPool in the list until we achieve a successful allocation. If
we have reached the end of the list and were not able to find a large enough free region
in any of the StaticKokkosPools, we allocate a new StaticKokkosPool with the
size of max (r ,mostChunks ∗ g), where r is the number of chunks requested as defined
above, mostChunks is the number of chunks in the largest StaticKokkosPool, and
g is the growth factor. In Omega h, the default growth factor is two. This strategy
ensures an allocation will be successful until the machine runs out of physical memory.
Ideally, the total size of the initial StaticKokkosPool and size of the chunks should
be fine tuned to avoid this process.

4 Testing and Performance

4.1 Testing

The implementation discussed here resides in Omega h, a mesh adaptivity library.
The library was benchmarked with and without the memory pool against the FUN3D
delta wing case from the Unstructured Grid Adaptive Working Group adaptation
benchmarks [6] on the Oak Ridge Leadership Computing Facility’s Frontier. First,
we built Kokkos, libMeshb, and Omega h as described in the Omega h wiki [7].
By default, the memory pool is disabled and must be explicitly enabled with the
--osh-pool command line flag. In addition, we built and used the Kokkos Tools
MemoryEvents tool as per the Kokkos Tools wiki [8]. We ran the 500k case, which
comprised of 581,196 tetrahedrons before adaptation and 5,283,878 tetrahedrons after
adaptation, with the pool disabled and with the MemoryEvents tool enabled to get
a sense of the allocation patterns for this particular set of benchmarks. We found
that it uses at most 670 MiB during the lifetime of the benchmark. Thus we chose
an initial pool size of 700 MiB. In addition, we found that allocation requests were
greater than 1 kiB more often than not, thus we decided to set the fixed-chunk size
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to 1 kiB.

4.2 Performance

After we determined these parameters for the pool, we ran all subsequent benchmarks
without the Kokkos Tools enabled. In the 50k case without pooling, adapting 581,196
tetrahedrons to 533,937 tetrahedrons took 0.89 seconds total. With the pool engaged,
this time was reduced to 0.49 seconds, a 45% time reduction. In the 500k case without
pooling, adapting 581,196 tetrahedrons to 5,283,878 tetrahedrons5 took 18.28 seconds
total while, with the pool enabled, adaptation only took 11.57 seconds on average, a
37% time reduction. We then reduced the initial size of the pool to 100 KiB. This is
significantly less than what we determined the benchmarks need and should require
the pool to resize more often during the runtime. We found that difference in time
reduction brought about by the additional resizing behavior of the pool was less than
1%.
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Figure 5: A bar plot showing the performance improvements in the delta wing case
brought by the implementation of a memory pool. Less time is better.
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5 Closing Remarks and Future Work

This implementation only splits and coalesces free regions, not individual chunks.
Thus, it is possible for small allocations, or allocations that don’t roughly align
with multiples of the chunk size to result in excessive memory waste as the vast
majority of an end chunk may not be used, especially if chunks are large. Alternative
implementations such as Umpire on the other hand split and coalesce individual
chunks, resulting in lesser memory usage. Regardless, this implementation manages
to bring substantial performance improvements in a cross-platform manner. Thus far,
this implementation has been tested on AMD and NVIDIA devices. Future work aims
to test this implementation on Intel devices as well. Furthermore, this implementation
has only been tested on systems with traditional, separate discrete host and device
memory. With the advent of modern unified memory architectures, we intend to test
this implementation on newer systems such those that utilize NVIDIA’s Grace-Hopper
APU and AMD and Intel equivalents. Here, we determined that fixed-size chunk
memory pools are just as suitable for use in device memory spaces as host memory
spaces. We also determined that such a pool is suitable for use across different devices
and vendors. Testing has also confirmed that pooling device memory significantly
reduces the running time of an application by upwards of up to 45%. In conclusion,
fixed-size chunk memory pools are a viable method of managing device memory that
brings substantial performance improvements in a cross-platform manner.
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